
Ruben Verborgh

Semantic Web: 
SOLUTION  
looking for 
PROBLEM?

Semantic Web: 
SOLUTION  
looking for 
PROBLEM?

How to read and write 
data from different sources  

on the Web?

PROBLEM

A scalable way 
to query data  
on the Web.

SOLUTION

Web interfaces to Linked Data

A different balance of trade-offs

Real-world federated queries

</articles/www> a schema:ScholarlyArticle.

</articles/www> schema:name "The World-Wide Web".

</articles/www> schema:author </people/timbl>.

</articles/www> schema:author </people/cailliau>.

</articles/www> schema:author </people/groff>.

The Resource Description Framework  
captures facts as triples.

SELECT * WHERE {

 ?article a schema:ScholarlyArticle.

 ?article schema:author ?author.

 ?author schema:name "Tim Berners-Lee".

}

SPARQL is a language (and protocol) 
to query RDF datasources.

A SPARQL endpoint lets clients  
execute SPARQL queries over HTTP.

The server has a triple store.

The client sends a query to the server.

The server executes the query 
and sends back the results.

Web interfaces to Linked Data

A different balance of trade-offs

Real-world federated queries

Queryable Linked Data on the Web 
has a two-sided availability problem.

There a few SPARQL endpoints  
because they are expensive to host.

Those endpoints that are on the Web 
suffer from frequent downtime.

The average public SPARQL endpoint 
is down for 1.5 days each month.

Data dumps allow people to set up 
their own private SPARQL endpoint.

Users need a technical background 
and the necessary infrastructure.

What about casual usage 
and mobile devices?

We are not really querying the Web…

It is not an all-or-nothing world.  
There is a spectrum of trade-offs.

high server costlow server cost

data 
dump

SPARQL 
endpoint

interface offered by the server

high availability low availability
high bandwidth low bandwidth
out-of-date data live data

low client costhigh client cost

Linked Data Fragments are 
a uniform view on Linked Data interfaces.

data 
dump

SPARQL 
endpoint

interface offered by the server

Every Linked Data interface 
offers specific fragments  
of a Linked Data set.

data

metadata

controls

What triples does it contain?

What do we know about it?

How to access more data?

Each type of Linked Data Fragment  
is defined by three characteristics.

all dataset triples

(none)

data dump

number of triples, file size

data

metadata

controls

Each type of Linked Data Fragment  
is defined by three characteristics.

triples matching the query

(none)

(none)

SPARQL query result
data

metadata

controls

Each type of Linked Data Fragment  
is defined by three characteristics.

We designed a new trade-off mix  
with low cost and high availability.

high server costlow server cost

data 
dump

SPARQL 
query results

high availability low availability
high bandwidth low bandwidth
out-of-date data live data

low client costhigh client cost

low server cost

data 
dump

SPARQL 
query results

high availability
live data

Triple Pattern 
Fragments

A Triple Pattern Fragments interface 
is low-cost and enables clients to query.

matches of a triple pattern

total number of matches

access to all other fragments

data

metadata

controls

(paged)

A Triple Pattern Fragments interface 
is low-cost and enables clients to query.

data (first 100)

controls (other fragments)

metadata (total count)

data 
dump

SPARQL 
query results

Triple Pattern 
Fragments

Triple patterns are not the final answer. 
No interface ever will be.

Triple patterns show how far we can get 
with simple servers and smart clients.

Experience the trade-offs yourself  
on the official DBpedia interfaces.

DBpedia data dump

DBpedia Linked Data documents

DBpedia SPARQL endpoint

DBpedia Triple Pattern Fragments
fragments.dbpedia.org

Web interfaces to Linked Data

A different balance of trade-offs

Real-world federated queries

Triple Pattern Fragments publication  
is very straightforward.

Servers only need to implement  
a simple API.

A SPARQL endpoint as backend 
is not a necessity.

The compressed HDT format  
is very fast for triple patterns.

The LOD Laundromat hosts  
650.000 Triple Pattern Fragment APIs.

Datasets are crawled from the Web, 
cleaned, and compressed to HDT.

This shows the potential  
of a very light-weight interface.

Centralization is not a goal though:  
we aim for distributed interfaces.

Give them a SPARQL query. 
Give them a URL of any dataset fragment.

How can intelligent clients 
solve SPARQL queries over fragments?

They look inside the fragment 
to see how to access the dataset

and use the metadata 
to decide how to plan the query.

Suppose a client needs to evaluate 
this query against a TPF interface.

Fragment: http://fragments.dbpedia.org/2014/en

SELECT ?person ?city WHERE {
 ?person rdf:type dbpedia-owl:Scientist.
 ?person dbpedia-owl:birthPlace ?city.
 ?city foaf:name "Geneva"@en.
}

The HTML representation explains: 
“you can query by triple pattern”.

controls

Triple Pattern Fragment servers 
enable clients to be intelligent.

controls

Triple Pattern Fragment servers 
enable clients to be intelligent.

<http://fragments.dbpedia.org/2014/en#dataset> hydra:search [
 hydra:template "http://fragments.dbpedia.org/2014/en
 {?subject,predicate,object}";
 hydra:mapping
 [hydra:variable "subject"; hydra:property rdf:subject],
 [hydra:variable "predicate"; hydra:property rdf:predicate],
 [hydra:variable "object"; hydra:property rdf:object]
].

The RDF representation explains: 
“you can query by triple pattern”.

The HTML representation explains: 
“this is the number of matches”.

metadata

Triple Pattern Fragment servers 
enable clients to be intelligent.

The RDF representation explains: 
“this is the number of matches”.

metadata

Triple Pattern Fragment servers 
enable clients to be intelligent.

<#fragment> void:triples 8141.

The server has triple-pattern access, 
so the client splits a query that way.

Fragment: http://fragments.dbpedia.org/2014/en

SELECT ?person ?city WHERE {
 ?person rdf:type dbpedia-owl:Scientist.
 ?person dbpedia-owl:birthPlace ?city.
 ?city foaf:name "Geneva"@en.
}

The client gets the fragments  
and inspects their metadata.

?person rdf:type dbpedia-owl:Scientist
first 100 triples

18.000

?person dbpedia-owl:birthPlace ?city.
first 100 triples

625.000

?city foaf:name "Geneva"@en.
first 100 triples

12

Execution continues recursively 
using metadata and controls.

?person rdf:type dbpedia-owl:Scientist

?person dbpedia-owl:birthPlace ?city.

?city foaf:name "Geneva"@en.
dbpedia:Geneva foaf:name "Geneva"@en.

12

dbpedia:Geneva,_Alabama foaf:name "Geneva"@en.
dbpedia:Geneva,_Idaho foaf:name "Geneva"@en.
…

Executing this query with TPFs 
takes 3 seconds—consistently.

SELECT ?person ?city WHERE {
 ?person rdf:type dbpedia-owl:Scientist.
 ?person dbpedia-owl:birthPlace ?city.
 ?city foaf:name "Geneva"@en.
}

Results arrive in a streaming way, 
already after 0.5 seconds.

Web interfaces to Linked Data

A different balance of trade-offs

Real-world federated queries

For a Triple Pattern Fragments client,  
federated queries are not special.

The client’s algorithm is based 
on fetching fragments from a server.

The client does not care about  
what server it asks fragments from.

Federation is native to  
Triple Pattern Fragments clients.

We will use three large datasets 
as a demo of federated querying.

DBpedia 377.000.000 triples  
7.1GB HDT file

VIAF 684.000.000 triples  
6.8GB HDT file

Harvard Library 183.000.000 triples  
2.4GB HDT file

Web interfaces to Linked Data

A different balance of trade-offs

Real-world federated queries

DBpedia

VIAF

We will use three large datasets 
as a demo of federated querying.

377.000.000 triples  
7.1GB HDT file

684.000.000 triples  
6.8GB HDT file

183.000.000 triples  
2.4GB HDT file

Harvard Library

This  
could be  

your data!

DBpedia

VIAF

We will use three large datasets 
as a demo of federated querying.

377.000.000 triples  
7.1GB HDT file

684.000.000 triples  
6.8GB HDT file

183.000.000 triples  
2.4GB HDT file

Harvard Library

This  
should be  
your data!

Triple pattern fragments are easy: 
all software is available as open source.

github.com/LinkedDataFragments

linkeddatafragments.org

Software

Documentation and specification

There are no excuses left  
to not publish Linked Data.

The Triple Pattern Fragments interface 
is inexpensive to host.

It allows people to query your dataset.

It allows federated queries with Web data, 
which includes your dataset.

Semantic Web: 
SOLUTION  
looking for 
PROBLEM?

Linked Data: 
SOLUTION  
looking for 
PROBLEM?

Linked Data: 
SOLUTION  

ready to tackle 
PROBLEM?data s

on the Web.

Ruben Verborgh

